skip to main content


Search for: All records

Creators/Authors contains: "Hsu, Wei-Che"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Silicon microring modulator plays a critical role in energy-efficient optical interconnect and optical computing owing to its ultra-compact footprint and capability for on-chip wavelength-division multiplexing. However, existing silicon microring modulators usually require more than 2 V of driving voltage (Vpp), which is limited by both material properties and device structures. Here, we present a metal-oxide-semiconductor capacitor microring modulator through heterogeneous integration between silicon photonics and titanium-doped indium oxide, which is a high-mobility transparent conductive oxide (TCO) with a strong plasma dispersion effect. The device is co-fabricated by Intel’s photonics fab and our in-house TCO patterning processes, which exhibits a high modulation efficiency of 117 pm/V and consequently can be driven by a very low Vppof 0.8 V. At a 11 GHz modulation bandwidth where the modulator is limited by the RC bandwidth, we obtained 25 Gb/s clear eye diagrams with energy efficiency of 53 fJ/bit.

     
    more » « less
  2. Abstract

    Silicon microring resonators (Si-MRRs) play essential roles in on-chip wavelength division multiplexing (WDM) systems due to their ultra-compact size and low energy consumption. However, the resonant wavelength of Si-MRRs is very sensitive to temperature fluctuations and fabrication process variation. Typically, each Si-MRR in the WDM system requires precise wavelength control by free carrier injection using PIN diodes or thermal heaters that consume high power. This work experimentally demonstrates gate-tuning on-chip WDM filters for the first time with large wavelength coverage for the entire channel spacing using a Si-MRR array driven by high mobility titanium-doped indium oxide (ITiO) gates. The integrated Si-MRRs achieve unprecedented wavelength tunability up to 589 pm/V, or VπL of 0.050 V cm with a high-quality factor of 5200. The on-chip WDM filters, which consist of four cascaded ITiO-driven Si-MRRs, can be continuously tuned across the 1543–1548 nm wavelength range by gate biases with near-zero power consumption.

     
    more » « less
  3. We demonstrated efficient gate-tuning on-chip wavelength division multiplexing filters using a silicon microring resonator array driven by high-mobility titanium-doped indium oxide gates. It shows extensive wavelength coverage for entire channel spacing over 5 nm.

     
    more » « less
  4. A novel characterization method is proposed to extract the optical frequency field-effect mobility (μop,FE) of transparent conductive oxide (TCO) materials by a tunable silicon microring resonator with a heterogeneously integrated titanium-doped indium oxide(ITiO)/SiO2/siliconmetal–oxide–semiconductor (MOS) capacitor. By operating the microring in the accumulation mode, the quality factor and resonance wavelength shift are measured and subsequently used to derive theμop,FEin the ultra-thin accumulation layer. Experimental results demonstrate that theμop,FEof ITiO increases from 25.3 to38.4  cm2V1s1with increasing gate voltages, which shows a similar trend as that at the electric frequency.

     
    more » « less